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Abstract

A necessary and sufficient condition is given, for the

disjunctive constraints construction to provide all valid cuts

for a system of logical constraints on linear inequalities.

Key Words:

1) Integer programming

2) Disjunctive constraints
3) Polyhedral annexation

4) Cutting-planes
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A CONVERSE FOR DISJUNCTIVE CONSTRAINTS

by C.E. Blair and R.G. Jeroslow

Recently programming problems have been considered which
place logical restrictions on linear inequalities [1], [4], [8].
One format for these restrictions [1], [2], [3] involves several
sets of linear constraints with the restriction th;t the feasible
vectors satisfy all the constraints in at least one of the sets.

Formally, we are concerned with the set of x ¢ R" satisfying
a disjunction of inequality systems, i.e., the requirement that at
least one of the following systems hold for x:

ij > bj
3 (JeH)
x>0

(8)

where bj € Rm(j), Aj € Rp(j)xn. Balas [1], [2] gave a method for

obtaining inequalities

(1) ox > 8 [6eR, 6eR]
such that every x satisfying at least one of the (S)j satisfied (1):

(%) If hj € R?(j), hJ >0 for j ¢ H then (1) is a valid cut where

6 < inf hjbj and the
jeH

ith component of © is at least the supremum (over jeH)

of the 1th component of h,A,.

B




2.

In (S)j’ we allow the index set H to be finite or infinite

so long as H # §. In (¥), it is required that the infima and
the supremum mentioned exist,
In this note we investigate conditions under which the operation

(*) gives all valid cuts for the systems §

b

Let S € H be the subscripts of those systems in SJ |
which are consistent [i.e., j € S iff there is an x > O with :

Ajx2b.]. Let I= HN\S. For jeH, C’(Aj) cr"
VAN

is the cone generated by the rows of A T v| v > w for

3 ]
some w e(ﬁ(Aj)} i.e.,ty(Aj) is the cone generated by the rows of

Aj plus the rows of the identity matrix for the constraints x > 0.

In what follows, the intersection over an empty index set is the
whole space,

Theorem 1: The operation (*) gives all valid cuts for the disjunctive
conditions (S)j if

(# jQSJ(Aj) Coﬂ’(/‘k)

holds for every keI, Conversely, if S is finite and (*) gives all
valid cuts then (#) holds for every kel.

Proof: Suppose (#) holds and that @x > § is a valid cut. By the

Farkas Lemma, for each j € S there is hj > 0 such that thj <e

and hjbj > &. By the Kuhn-Fourier Theorem, for each j ¢ I there is

gj > 0 such that ngj < 0 and gjbj > 0. By (#) 9 c[’(AJ) for every jeI,

hence there is S'j‘i 0 such that g'jAj < 8. So we may obtain (1)

by the operation (*) by taking h, as above for j ¢ S and h

3 A

sufficiently large,

378yt 8y

for j ¢ I and kj
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On the other hand, if (%) does not hold there is

8¢ N AN\ N @A
je8 3 g 9

that the inequality Ox > § is valid for the disjunctive system

). If S is finite there is some § such

(S)j. Since there is some jeI such that thj is not componentwise

< @ for any h, > 0, (*) cannot yield 6x > 6. Q.E.D.

]

For jeHaN’(AJ) is a finitely generated cone. The
n
polar of,ﬁf(Aj) is the negative of { x|x e R, x>0, ij >0 | =

PP

For finitely generated cones A 2 B = AP ¢ Bp, A" = A, and

L i

/ F g
@) ( Na )P = closure £ AP | FE 1,1 finite;
iel ieF

for an arbitrary index set I. Note that, if I in (2) is finite,

(2) becomes

‘ \
@yt rwAi;P ER Aip .
el iel

We have the following results, where the sum over an empty

index set is {0]}.

Corollary 1: If H is finite the operation (*) gives all valid cuts for

the systems (S)j iff

(oM £ {x|x>0,4a

5 >o0}2{x|x >0 Ax > 0}
jes

for every keI,

Corollary 2: For any H, (*) gives all valid cuts if

(##) closure U z [xlx > 0, A x >0}t)=2{x|x >0, A x > 0]}
8l })2txlx 2 0, &
F finite v

for every keI,




We mention three applications of Corollary 2.
Corollary 3: ([6, Corollary 23] for lH‘ finite)., If Aj = A is independent

of j and S # @ then (*) gives all valid cuts.

4 Corollary 4: If S # @ and for each k ¢ I there is j € S
; such that
{x|x >0, Agx 2 0} =2 {x|x > o0, AX2 0}

then (*) gives all valid cuts.

E/ Corollary 5: If each system ij = bj has the form
5 :

A'x

v

3

»
-
[}
.

then (*) gives all valid cuts.

T
-
.
L2 ]

Proof: { xlx >20,A'"x>0, X, = 0,...,xr = 01} is independent

of j, and Corollary 3 applies.
| OOE.D.

‘ Corollary 5 shows that the disjunctive constraint systems

corresponding to an integer program provide all the valid

{4
g - cutting-planes, hence the same is also true of the equivalent
f polyhedral annexation construction (see also [4], [5] for a
i .| proof of Corollary 5 for a bounded integer program).
i
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5.

When S is infinite the operation (*) may yield all valid inequalities

even though (#) does not hold.
Let n = 2 ,H = {0,1,2,...}. Consider the systems

Example:
X 22 “xy2- 1
(s)ois Xy 2 -1 for i > 1’(5)1 is X%, >0
Xy Xy >0 !
£

Clearly every (xl, x2) € R2 with X5 X, > 0 satisfies at least one of the
systems (S)i, so the valid cuts are all of the form oxy + sz >0 for all

@, B > 0ando < 0. These can clearly be obtained by (*).

However S = {1,2,...}, I = {0}, and

8= (0,-e N AF@A)\LA)
jes i i

so (#) fails.

Finally, we give a necessary and sufficient condition for the case
when S is infinite. This condition appears to be harder to use than the

the sufficient condition (##). For ieS, let E = {x > O\Aix > bi}'

Theorem 6: The operation (*) gives all valid inequalities for (S).1 iff

(HHE) clconv({O} U (ilisEi)) 2{x > Olij > 0}

for every jel.

Proof. If Ox > 6 is a valid inequality for the systems (S)J then every

xe U Ei must satisfy Ox > 6. By the Farkas lemma, for each jeS there
ieS

is g, 2 0 such that gA, < @ and gjbj > §. For every x ¢ clconv({O}U(iusE’.)) '
¢
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6.

we have 9x > min(0,6). 1f (###) holds, then the conditions x > 0, ij >0

imply that ©x > min(0,6) whenever jel. By the Farkas lemma there is, for

each jeI.h, > 0 such that h A, < 9. As in the proof of Theorem 1, the

i

h|
inconsistency of ij > bj’ x > 0 is used to obtain 6x > § by (*).

Conversely, if (###) fails there is j€I and

A\
ze{x > 0|a.x > O]\clconv({o} U( UE // By the separating hyperplane
L tes

theorem there is 8,8 such that 8z < 8 and 0x > § for x ¢ c1conv<{0] U( u E’_».
ieS
8x > §6.is valid for the systems (S)j and also 0 =9 - 0 > 6.

If Ox > b were obtained by (*), for some h, > 0 we have h A, < 0.

] i B
Hence, as z > 0 and Ajz >0, also 6z > thjz 20 > 6. This contradicts
0z < 6. Q.E.D.
’
May 20, 1976
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